strange behaviors

Cool doings from the natural and human worlds

  • Richard Conniff

  • Reviews for Richard Conniff’s Books

    Every Creeping Thing: True Tales of Faintly Repulsive Wildlife: “Conniff is a splendid writer–fresh, clear, uncondescending, and with never a false step; one can’t resist quoting him.” (NY Times Book Review)

    The Species Seekers:  Heroes, Fools, and the Mad Pursuit of Life on Earth by Richard Conniff is “a swashbuckling romp” that “brilliantly evokes that just-before Darwin era” (BBC Focus) and “an enduring story bursting at the seams with intriguing, fantastical and disturbing anecdotes” (New Scientist). “This beautifully written book has the verve of an adventure story” (Wall St. Journal)

    Swimming with Piranhas at Feeding Time by Richard Conniff  is “Hilariously informative…This book will remind you why you always wanted to be a naturalist.” (Outside magazine) “Field naturalist Conniff’s animal adventures … are so amusing and full color that they burst right off the page …  a quick and intensely pleasurable read.” (Seed magazine) “Conniff’s poetic accounts of giraffes drifting past like sail boats, and his feeble attempts to educate Vervet monkeys on the wonders of tissue paper will leave your heart and sides aching.  An excellent read.” (BBC Focus magazine)

  • Wall of the Dead

  • Categories

  • Advertisements

The Secret to Jellyfish Success: Cruise Control

Posted by Richard Conniff on October 8, 2013

A jellyfish in the South China Sea. (Photo: David Lo/Getty)

A jellyfish in the South China Sea. (Photo: David Lo/Getty)

Here’s my latest blog item for the TakePart web site. You can read it there. But I am posting the whole piece here so I can include a helpful video.

In the popular imagination, jellyfish are just blobs—listless drifting things, without eyes, ears, or even a brain for figuring out how to get from one place to another. Scientists have long argued against this misguided notion. They say the familiar medusa-style (or bell-shaped) jellyfish are highly effective at getting where they need to go, employing both jet propulsion and a rowing motion.  They travel efficiently enough, in fact, that jellyfish often outcompete the fish that appear to be their bigger, faster, smarter rivals.

So how do they do it? The secret to jellyfish locomotion, according to a new study in the Proceedings of the National Academy of Sciences, isn’t about how hard the jellyfish works.

It’s about how it relaxes.

Until now, scientists understood jellyfish movement this way:  When a jellyfish contracts, it shoots out water from within the bell.  At the same time, the outer edges of the jelly flap and push water away, much as each oar on a boat spins off a vortex in its wake.  The motion of contracting also causes a rubbery disk called the mesoglea in the middle of the jellyfish to bend down at its outer edges.  Then, when the jellyfish, relaxes, the mesoglea springs back out again, filling the bell with water for the next burst of speed.

Even to scientists, though, this explanation of how a jellyfish gets around has never been entirely satisfying.  Not to put too fine a point on it, a jellyfish is  mostly gelatinous goo.  Sea snot, even. Only about one percent of its mass is muscle, compared to more than 50 percent in the average fish. Moreover, jellyfish muscle is only one cell layer thick.

“It’s always been sort of counterintuitive,” says Brad Gemmell of the Marine Biological Laboratory at Woods Hole, MA. “Fish are highly advanced predators with great visual and chemosensory abilities.” They can spot an energy-rich food source at a distance and chase it down. A jellyfish, meanwhile, can eat only what it happens to bump into.

And yet a vast bloom of jellyfish can suddenly appear in a habitat and gobble up all the available food, including fish eggs and the fish themselves.  In one particularly ghastly case off the coast of Ireland, a jellyfish flotilla 10 square miles in area swarmed over an organic fish farm, killing 100,000 salmon worth more than $2 million.

Jellyfish blooms have become far more common in recent years, probably because of increasing ocean acidification. They’ve clogged intake lines and last week shut down a nuclear power plant in Sweden, and they’ve driven swimmers out of the water from Florida to Italy.  They’ve also slowed the recovery of commercial fisheries by outcompeting cod and other fish for prey.

Biologists who study how jellyfish get around have customarily focused on the way the jellyfish contracts its muscles.  There didn’t seem to be much happening during the relaxation part of the cycle.  But when Gemmell and his co-authors took a closer look at two common species, including moon jellies, they discovered that jellyfish are taking advantage of a hidden form of locomotion:  Because jellyfish have that familiar radial shape, each contraction creates a donut-shaped vortex inside the bell.  That vortex draws in water and pushes the jellyfish forward as it is basically coasting, with no muscle movement whatsoever.

Here’s a video that is, I’m afraid, really boring. But it will give you a better sense of how the donut vortex moves water and propels the jellyfish:

This energy-efficient power source accounts for about 30 percent of forward motion, according to the new study.  Combine it with the passive energy storage and recovery that comes from the springiness of the mesoglea, and muscle movement occurs just 20 percent of the time during the jellyfish swimming cycle.

That’s far more efficient than any fish.  The only limit has to do with size: Because jellyfish muscles are only one cell layer thick, they become less effective as a jellyfish gets bigger.  Even so, it takes a fish weighing more than 220 pounds to begin to match the energy efficiency of a jellyfish.

Gemmell says the new study, part of a larger U.S. Navy project on nontraditional forms of locomotion, could ultimately lead to high-efficiency, low speed vehicles–for instance, oceanic measuring devices meant to maintain their position in the water column unattended for months or years at a time.

For now, though, it’s enough to understand how one important animal group succeeds with almost no effort—and to know that strong and sophisticated do not always triumph over small, simple, and slow.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s